Review Problems

(Electric Engineering)

Chapter 2

- 1) The voltage across a 5-k Ω resistor is 16 V. Find the current through the resistor.
- 2) When the voltage across a resistor is 120 V, the current through it is 2.5 mA. Calculate its resistance
- 3) Which of the circuits in the figure below will give you $V_{ab} = 7 \text{ V}$?

- 4) The current I in the circuit below is: (a) -0.8 A
- (b) -0.2 A
- (c) 0.2 A
- (d) 0.8 A

5) Use KCL to obtain currents i_1 , i_2 , and i_3 in the circuit shown below.

6) Obtain v_1 through v_3 in the circuit below.

7) Calculate the power dissipated in the 5- Ω resistor in the circuit below.

8) Find i, v, and the power dissipated in the 6- Ω resistor in figure below.

9) In the circuit of the figure below, find R if $V_0 = 4 \,\mathrm{V}$.

10) Obtain the equivalent resistance at the terminals a-b for the circuit shown below.

11) What value of R in the circuit below would cause the current source to deliver 800 mW to the resistors?

12) Determine V in the circuit below.

Chapter 3

13) Determine v_1 and v_2 in the circuit below using nodal analysis.

14) Find the currents i_1 through i_4 and the voltage v_0 in the circuit shown below using nodal analysis.

15) Calculate v_0 in the circuit shown below using nodal analysis.

16) Calculate v_1 and v_2 in the circuit below using nodal analysis.

17) Apply mesh analysis to find v_0 in the circuit below.

18) Calculate the mesh currents i_1 and i_2 in the circuit below.

19) Calculate the mesh currents i_1 and i_2 in the circuit below.

20) Calculate the mesh currents i_1 and i_2 in the circuit below.

Chapter 4

21) Calculate the current i_0 in the circuit below. What does this current become when the input voltage is raised to 10 V?

22) Find v_0 in the circuit shown below. If the source current is reduced to 1 μ A, what is v_0 ?

5 Ω 4 Ω

23) Apply superposition to find i in the circuit below.

24) Determine v_0 in the circuit below using the superposition principle.

25) For the circuit shown below, use superposition to find i. Calculate the power delivered to the 3- Ω resistor.

26) Apply source transformation to determine v_0 and i_0 in the circuit below.

27) For the circuit below, use source transformation to find i.

28) Determine R_{Th} and V_{Th} at terminals 1-2 of each of the circuits below.

29) Find the Thevenin equivalent at terminals a-b of the circuit below.

30) Find the Thevenin equivalent looking into terminals a-b of the circuit below and solve for i_x .

