# Greedy Power Allocation for Multicarrier Systems with Reduced Complexity

Waleed Al-Hanafy and Stephan Weiss

University of Strathclyde, Glasgow, UK Strathclyde



NRSC'2010, 16-18 March 2010 Faculty of Elec. Eng., Menouf - Egypt



## Overview

- 1 Motivation
- 2 Background
- 3 Proposed Scheme
  - Subchannels Grouping Concept
  - Uniform Power Allocation (UPA)
  - Full Greedy Power Allocation (GPA)
  - Grouped GPA (g-GPA)
  - Moving-up and -down GPA (Mu-GPA) and (Md-GPA)
- 4 Simulation Results
- 5 Conclusions





## Motivation

- With the increased demand for high-quality wireless communication services
- And the scarcity of available radio spectrum
- Wireless Comm. with MIMO channels is emerged
- Aim An efficient (simplified) high data rate transmission scheme



#### Problem Formalisation

For a MIMO or multicarrier system of N subchannels, data throughput can be optimised as:

$$\max \sum_{i=1}^{N} b_i, \tag{1}$$

subjected to : 
$$\begin{cases} \sum_{i=1}^{N} P_{i} \leq P_{\text{budget}}, \\ \forall \text{ subchannel } i \end{cases} \begin{cases} \mathcal{P}_{b,i} = \mathcal{P}_{b}^{\text{target}} \\ b_{i} \leq b^{\text{max}} = \log_{2} M_{K} \end{cases}$$
 (2)



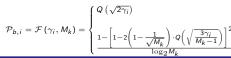
#### Previous Work

- Waterfilling-based solutions [Baccarelli2002], [Zhang2003]
  - Limitations: SNR-gap approximation and  $\left\{egin{array}{l} b_i^{(r)}=\lfloor b_i 
    floor \ b_i^{(r)} o\infty \end{array}
    ight.$  thus lowering the overall throughput
- Optimal discrete bit loading greedy approach [Campello1999], [Fasano2002]
- Greedy power allocation [Zeng2009]
  - Limitations: high computational complexity
- Low-complexity greedy algorithm based on look-up tables is proposed in [Assimakopoulos2006]
  - Limitations: does not lead to pronounced reduction especially for large N




Ordered: & QAM levels

group G;


group Go

Moving-up and -down GPA (Mu-GPA) and (Md-GPA)

# Subchannels Grouping Concept







for BPSK

$$\longrightarrow \gamma_k^{\rm QAM} = \mathcal{F}^{-1}\left(\mathcal{P}_b^{\rm target}, M_k\right)$$
 for  $M_k$  QAM.  $A \supset A \supset A \supset A \supset A$ 



Waleed Al-Hanafy and Stephan Weiss

group G<sub>2</sub>

γQA3 group G group Go

indices for G

# UPA algorithm & Initialisation Setup

Uniformly allocate transmit power budget among all subchannels:

$$CNR_i = \frac{\sigma_i^2}{N_0}, \qquad \gamma_i = \frac{P_{budget}}{N} \times CNR_i$$
 (3)

2 For each subchannel i, reside in a QAM group k of modulation order  $M_k$  such that:

$$\gamma_i \ge \gamma_k^{\mathrm{QAM}}$$
 and  $\gamma_i < \gamma_{k+1}^{\mathrm{QAM}}$  (4)

3 For each QAM group cal. the group's total allocated bits and excess (unused) power

$$B_k^{\mathbf{u}} = \sum_{i \in \mathcal{G}_k} b_{i,k}^{\mathbf{u}} = \sum_{i \in \mathcal{G}_k} \log_2 M_k \tag{5}$$

$$P_k^{\text{ex}} = \sum_{i \in G_k} \frac{\gamma_i - \gamma_k^{\text{QAM}}}{\text{CNR}_i} = \sum_{i \in G_k} P_i - \frac{\gamma_k^{\text{QAM}}}{\text{CNR}_i}$$
 (6)

4 Now, the total throughput and used power are therefore,

$$B_{u} = \sum_{k=1}^{K} B_{k}^{u} \quad \text{and} \quad P_{u}^{\text{used}} = P_{\text{budget}} - \sum_{k=0}^{K} P_{k}^{\text{ex}}$$

University of Strathclyde

Moving-up and -down GPA (Mu-GPA) and (Md-GPA)

# Full GPA algorithm

- 1 Initialise bit and power allocation by applying the UPA algorithm
- 2 The excess (unused) power  $P_d^{\text{gpa}} = \sum_{k=0}^K P_k^{\text{ex}}$  is iteratively allocated to subchannels as:
  - 1 For each iteration: find subchannel i with the min req. upgrade\* power

$$P_i^{\rm up} = \frac{\gamma_{k_i+1}^{\rm QAM} - \gamma_{k_i}^{\rm QAM}}{{\rm CNR}_i} \tag{8}$$

- 2 Promote this subchannel to the next higher QAM level and update power  $P_d^{\rm gpa} = P_d^{\rm gpa} P_i^{\rm up}$
- Repeat substeps (1) & (2) until either  $P_d^{\text{gpa}} < \min(P_i^{\text{up}}) \text{ or } \min(k_i) = K$
- 3 Compute the total bit loading

$$B_{\rm gpa} = \sum_{i=1}^{N} b_i^{\rm gpa} \tag{9}$$

\*Notice — It is possible to find subchannels in lower QAM levels that need less power to upgrade than others in higher QAM levels - hence its high complexity



Moving-up and -down GPA (Mu-GPA) and (Md-GPA)

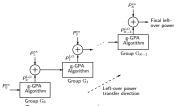
# Grouped-GPA (g-GPA) algorithm

- For each QAM group k apply the GPA algorithm for local subchannels  $i \in G_k$
- Compute the total allocated bits and left-over power

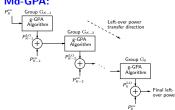
$$B_{\rm g} = \sum_{k=0}^{K-1} B_k^{\rm g} + B_K^{\rm u} \quad \text{and} \quad P_{\rm g}^{\rm LO} = \sum_{k=0}^{K-1} P_k^{\rm LO} + P_K^{\rm ex}$$
 (10)

#### Table: Computational analysis for both GPA and g-GPA algorithms

| algorithm                | no. of operations                                                              |
|--------------------------|--------------------------------------------------------------------------------|
| GPA (order and no order) | $L_1(2N+7)+4N+1$                                                               |
| g-GPA (no order)         | $\alpha[L_2(2\beta+4)+2\beta+2] \approx K[L_2(\frac{2N}{K}+4)+\frac{2N}{K}+2]$ |
| g-GPA (order)            | $\alpha[L_2(\beta+5)+2\beta+2]\approx K[L_2(\frac{N}{K}+5)+\frac{2N}{K}+2]$    |







Moving-up and -down GPA (Mu-GPA) and (Md-GPA)

# Mu-GPA and Md-GPA algorithms

#### Mu-GPA:

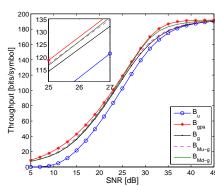


#### Md-GPA:



- Common procedures:
  - Apply g-GPA for the first QAM group
  - 2 Add the resultant  $P_k^{\text{LO}}$  to  $P_{k+1}^{\text{ex}}$  and allocate to the next QAM group using g-GPA
  - Repeat step steps (1) & (2) until last QAM group
- Differences: Mu-GPA starts with  $G_0$ , whereas Md-GPA starts with  $G_{K-1}$



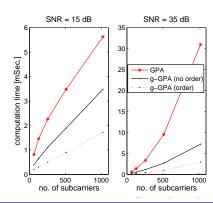

lotivation Background Proposed Scheme Simulation Results Conclusions

0000

## Performance Evaluation

#### system throughput results

- A 32-subcarrier system with target BER  $\mathcal{P}_b^{\mathrm{target}} = 10^{-3}$  is considered
- System throughput is shown for different loading schemes with varying SNR
- Mu-GPA is better for low-to-medium SNR while Md-GPA outperforms for medium-to-high SNR




Proposed Scheme Simulation Results

# Performance Evaluation (Contd.)

#### complexity evaluation results

- The computational complexity is evaluated using average run-time for full-GPA and g-GPA algorithms with varying no. of subchannels and at different SNR values
- Significant complexity reduction is gained using g-GPA at high SNR and large no. of subchannels





## Conclusions

- GPA is the optimal discrete power/bit allocation very complex for large number of subchannels
- A reduced-complexity version of GPA (g-GPA) is proposed by applying GPA on subsets of subchannels using the QAM-level grouping concept
- Two refinement algorithms are proposed to further utilise the LO power with superiority SNR regions
- Simulation results show very close performance to GPA algorithm within their SNR respective regions



## Questions

■ Thank You — Any Questions

