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1 Integration Definition

The integration of a function f(x) from x = a to x = b is written

ˆ b

a

f(x)dx .

This integral gives the area under the graph of f , with the area under
the positive part counting as positive area, and the area under the
negative part of f counting as negative area, see Fig. 1.
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Figure 1: The area under the graph of a function.

The traditional definition of the integral is based on a numerical
approximation to the area. We pick a partition {xi} of [a, b], and in
each subinterval [xi−1, xi] we determine the maximum and minimum
of f (for convenience we assume that these values exist),

mi = min
x∈[xi−1,xi]

f(x), Mi = max
x∈[xi−1,xi]

f(x),

for i = 1, 2, · · · , n. We use these values to compute the two sums

I =
n∑

i=1

mi(xi − xi−1), I =
n∑

i=1

Mi(xi − xi−1) .

To define the integral, we consider larger partitions and consider the
limits of I and I as the distance between neighbouring xis goes to
zero. If those limits are the same, we say that f is integrable, and the
integral is given by this limit. More precisely,

I =

ˆ b

a

f(x)dx = sup I = inf I,
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where the sup and inf are taken over all partitions of the interval [a, b].
This process is illustrated in Fig. 2 where we see how the piecewise
constant approximations become better when the rectangles become
narrower.

Figure 2: The definition of the integral via inscribed and circumsribed
step functions.

It can be shown that the integral has a very convenient property:
If we choose a point ti in each interval [xi−1, xi], then the sum

Ĩ =
n∑

i=1

f(ti)(xi − xi−1)
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will also converge to the integral when the distance between neigh-
bouring xis goes to zero. If we choose ti equal to xi−1 or xi, we have a
simple numerical method for computing the integral. An even better
choice is the more symmetric ti = (xi + xi−1)/2 which leads to the
approximation

I ≈
n∑

i=1

(f (xi + xi−1) /2)(xi − xi−1) .

This is the so-called midpoint method which is shown in Fig 3 and will
be studied next.

Figure 3: The midpoint rule with one subinterval (a) and five subin-
tervals (b).
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2 Midpoint Method

Algorithm:

ˆ b

a

f(x)dx ≈ Imid(h) = h
n∑

i=1

f(xi−1/2),

where

xi−1/2 = (xi + xi−1)/2 = a + (i− 1/2)h, andh = (b− a)/n

3 The Trapezoid Rule

The midpoint method is based on a very simple polynomial approxima-
tion to the function f to be integrated on each subinterval; we simply
use a constant approximation by interpolating the function value at
the middle point. We are now going to consider a natural alternative;
we approximate f on each subinterval with the secant that interpolates
f at both ends of the subinterval. The numerical integration under the
trapezoid rule is therefore

ˆ b

a

f(x)dx ≈ f(a) + f(b)

2
(b− a) .

To get good accuracy, we will have to split [a, b] into subintervals with
a partition and use this approximation on each subinterval, see Fig 4.
If we have a uniform partition {xi}ni=0 with step length h, we get the
approximation

ˆ b

a

f(x)dx =
n∑

i=1

ˆ xi

xi−1

f(x)dx ≈
n∑

i=1

f(xi−1) + f(xi)

2
h .
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Figure 4: The trapezoid rule with one subinterval (a) and five subin-
tervals (b).

Algorithm:

ˆ b

a

f(x)dx ≈ h

(
f(a) + f(b)

2
+

n−1∑
i=1

f(xi)

)
.

4 Simpson’s Rule

The final method for numerical integration that we consider is Simp-
son’s rule. This method is based on approximating f by a parabola on
each subinterval (see Fig. 5), which makes the derivation a bit more
involved. The numerical integration under the Simpson’s rule is there-
fore

ˆ b

a

f(x)dx ≈ b− a

6

(
f(a) + 4f

(
a + b

2

)
+ f(b)

)
.
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Figure 5: Simpson’s rule with one subinterval (a) and three subintervals
(b).

Algorithm:

ˆ b

a

f(x)dx ≈
h

3

(
f(a) + f(b) + 2

n−1∑
i=1

f(x2i) + 4
n∑

i=1

f(x2i−1)

)
.
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