Numerical Integration
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1 Integration Definition

The integration of a function f(z) from x = a to x = b is written

/abf(a:)dx.

This integral gives the area under the graph of f, with the area under
the positive part counting as positive area, and the area under the
negative part of f counting as negative area, see Fig. 1.



Figure 1: The area under the graph of a function.

The traditional definition of the integral is based on a numerical
approximation to the area. We pick a partition {x;} of [a,b], and in
each subinterval [x;_1,x;] we determine the maximum and minimum
of f (for convenience we assume that these values exist),

mi= min f(x), Mi= max f(x),
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forv=1,2,---,n. We use these values to compute the two sums

l = Zmz(azz — l’i_l), T = Z MZ(I’Z — xi_l) .
i=1 =1

To define the integral, we consider larger partitions and consider the
limits of I and I as the distance between neighbouring z;s goes to
zero. If those limits are the same, we say that f is integrable, and the
integral is given by this limit. More precisely,

b
]:/ f(z)dz =sup I = inf 1,
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where the sup and inf are taken over all partitions of the interval [a, b].
This process is illustrated in Fig. 2 where we see how the piecewise
constant approximations become better when the rectangles become
narrower.
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Figure 2: The definition of the integral via inscribed and circumsribed
step functions.

It can be shown that the integral has a very convenient property:
If we choose a point ¢; in each interval [x;_q, x;], then the sum

I= Z fti) (i — wia)
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will also converge to the integral when the distance between neigh-
bouring x;s goes to zero. If we choose t; equal to x;_1 or x;, we have a
simple numerical method for computing the integral. An even better
choice is the more symmetric t; = (x; + x;—1)/2 which leads to the
approximation

n

I =~ Z(f (II?Z + SL’Z'_l) /2)(£Cl — xi—l) .
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This is the so-called midpoint method which is shown in Fig 3 and will
be studied next.
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Figure 3: The midpoint rule with one subinterval (a) and five subin-
tervals (b).



2 Midpoint Method

Algorithm:

b n
[ #adde = Lsah) = 1Y fGaia)
a i=1

where

T2 = (i +2i21)/2 =a+ (1 = 1/2)h, andh = (b—a)/n

3 The Trapezoid Rule

The midpoint method is based on a very simple polynomial approxima-
tion to the function f to be integrated on each subinterval; we simply
use a constant approximation by interpolating the function value at
the middle point. We are now going to consider a natural alternative;
we approximate f on each subinterval with the secant that interpolates
f at both ends of the subinterval. The numerical integration under the
trapezoid rule is therefore

IRCCE Jal 20, ).

To get good accuracy, we will have to split [a, b] into subintervals with
a partition and use this approximation on each subinterval, see Fig 4.
If we have a uniform partition {z;};_, with step length h, we get the
approximation
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Figure 4: The trapezoid rule with one subinterval (a) and five subin-
tervals (b).

Algorithm:

[t (M 5 f(m) .

4 Simpson’s Rule

The final method for numerical integration that we consider is Simp-
son’s rule. This method is based on approximating f by a parabola on
each subinterval (see Fig. 5), which makes the derivation a bit more
involved. The numerical integration under the Simpson’s rule is there-

fore
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Figure 5: Simpson’s rule with one subinterval (a) and three subintervals

(b).

Algorithm:

b n—1 n
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