# Root-Finding — Newton's Method

March 7, 2014

## 1 Examples

**Example-1:** Find the root of the equation  $e^{-x}-5x=0$  using Newton's method.

#### Solution

Since the Newton method is given using the iterative equation

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},\tag{1}$$

using  $f(x) = e^{-x} - 5x$ , then  $f'(x) = -e^{-x} - 5$ . Starting with an initial value  $x_0 = 1$ , the iterations can be computed as shown in Table 1 which shows a stop at iteration no. 4 since the error is  $x_4 - x_3 < 10^{-5}$  resulting in a root of  $x^* = 0.16892$ , see Figure 1.

Table 1: Iterations for Example-1

| Iteration no. | $x_n$     | $f(x_n)$                  | $f'(x_n)$ | $x_{n+1}$ using (1) |
|---------------|-----------|---------------------------|-----------|---------------------|
| 1             | $x_0 = 1$ | -4.63212                  | -5.36788  | 0.13707             |
| 2             | 0.13707   | 0.18656                   | -5.87191  | 0.16884             |
| 3             | 0.16884   | $4.44036 \times 10^{-4}$  | -5.84464  | 0.16892             |
| 4             | 0.16892   | $-2.35332 \times 10^{-5}$ | -5.84458  | 0.16892             |

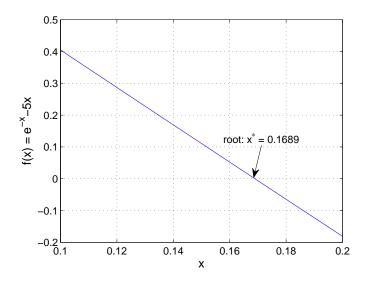


Figure 1: A plot of  $f(x) = e^{-x} - 5x$  using MATLAB.

**Example-2:** Apply Newton's method to solve  $f(x) = x^3 - 3x - 5$ .

### Solution

 $f(x) = x^3 - 3x - 5$  and  $f'(x) = 3x^2 - 3$ , beginning with  $x_0 = 3$ , the iterates are given in Table 2 which shows a stop at iteration no. 5 since the error is  $x_5 - x_4 < 10^{-5}$  resulting in a root of  $x^* = 2.27902$ , see Figure 2.

Table 2: Iterations for Example-2

| Iteration no. | $x_n$     | $f(x_n)$ | $f'(x_n)$ | $x_{n+1}$ using (1) |
|---------------|-----------|----------|-----------|---------------------|
| 1             | $x_0 = 3$ | 13       | 24        | 2.45833             |
| 2             | 2.45833   | 2.48165  | 15.13016  | 2.29431             |
| 3             | 2.29431   | 0.19399  | 12.79158  | 2.27914             |
| 4             | 2.27914   | 0.00153  | 12.58344  | 2.27902             |
| 5             | 2.27902   | 0.000015 | 12.581796 | 2.27902             |

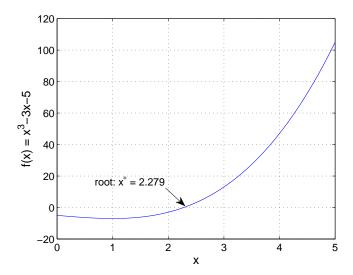


Figure 2: A plot of  $f(x) = x^3 - 3x - 5$  using MATLAB.

**Example-3:** Apply Newton-Raphson method to find  $\sqrt{2}$ .

### Solution

The value  $\sqrt{2}$  is the solution of the equation  $x^2 - 2 = 0$ , i.e, the root of the function  $f(x) = x^2 - 2$  with the 1st derivative f'(x) = 2x. Beginning with  $x_0 = 2$ , the iterates are given in Table 3 which shows a stop at iteration no. 5 since the error is  $x_5 - x_4 < 10^{-5}$  resulting in a root of  $x^* = 1.41421$ .

Table 3: Iterations for Example-3

| Iteration no. | $x_n$     | $f(x_n)$ | $f'(x_n)$ | $x_{n+1}$ using (1) |
|---------------|-----------|----------|-----------|---------------------|
| 1             | $x_0 = 2$ | 2        | 4         | 1.5                 |
| 2             | 1.5       | 0.25     | 3         | 1.41667             |
| 3             | 1.41667   | 0.00695  | 2.83334   | 1.41422             |
| 4             | 1.41422   | 0.000018 | 2.82844   | 1.41421             |
| 5             | 1.41421   | -0.00001 | 2.82842   | 1.41421             |

**Example-4:** Solve  $\cos x = 2x$  (x in  $\cos x$  is in radians) to 5 decimal places using Newton's method.

#### Solution

Solving for x in the given equation is equivalent to find the root of the function  $f(x) = \cos x - 2x$  where the 1st derivative is  $f'(x) = -\sin x - 2$ . Beginning with  $x_0 = 0$ , the iterates are given in Table 4 which shows a stop at iteration no. 4 since the error is  $x_4 - x_3 < 10^{-5}$  resulting in a root of  $x^* = 0.45018$ , see Figure 3.

Table 4: Iterations for Example-4

| Iteration no. | $x_n$     | $f(x_n)$                 | $f'(x_n)$ | $x_{n+1}$ using (1) |
|---------------|-----------|--------------------------|-----------|---------------------|
| 1             | $x_0 = 0$ | 1                        | -2        | 0.5                 |
| 2             | 0.5       | -0.12242                 | -2.47943  | 0.45063             |
| 3             | 0.45063   | -0.00109                 | -2.43553  | 0.45018             |
| 4             | 0.45018   | $8.79397 \times 10^{-6}$ | -2.43513  | 0.45018             |

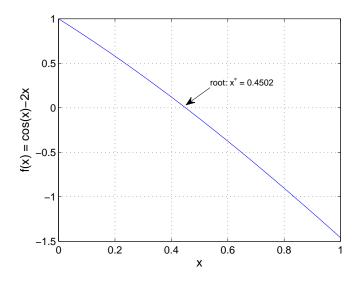


Figure 3: A plot of  $f(x) = \cos x - 2x$  using MATLAB.

## 2 Newton-Raphson Methods Drawbacks

- 1. It cannot handle multiple roots.
- 2. It has slow convergence (compared with newer techniques).
- 3. The solution may diverge near a point of inflection.
- 4. The solution might oscillates new local minima or maxima.
- 5. With near-zero slope, the solution may diverge or reach a different root.

# 3 Algorithm

### Newton's Method Algorithm

Given equation f(x) = 0, a predefined error  $\epsilon$ , and a maximum no. of iterations N Let the initial guess be  $x_0$  Do

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$

while the error  $x_{n+1} - x_n < \epsilon$  or n = N

## 4 Exercises

- 1. Find the root of the function  $y = x^3 + 4x^2 + 7$  in the vicinity of x = -4 correct to 5 decimal places.
- 2. Use Newton's Method to find the only real root of the equation  $x^3 x 1 = 0$  correct to 5 decimal places.

- 3. Using Newton's method solve  $x = \tan x$ . Use  $x_0 = 4$  and repeat the solution with  $x_0 = 4.6$ . Comment on the results in both cases.
- 4. Use the Newton-Raphson method, with 3 as starting point, to find  $\sqrt{10}$ .
- 5. Let  $f(x) = x^2 a$ . Show that the Newton method leads to the recurrence  $x_{n+1} = \frac{1}{2} \left( x_n + \frac{a}{x_n} \right)$ .
- 6. Newton's equation  $y^3 2y 5 = 0$  has a root near y = 2. Starting with  $y_0 = 2$ , compute  $y_1, y_2,$ and  $y_3,$ the next three Newton-Raphson estimates for the root.