Comparison of Precoding Methods for Broadband MIMO Systems

Waleed Al-Hanafy and Stephan Weiss

University of Strathclyde, Glasgow, UK Strathclyde

CAMSAP 2009, 16 Dec. 2009

Overview

- 1 Motivation
- Background
- 3 Proposed Scheme
- 4 Simulation Results
- 5 Conclusions

Motivation

- And the scarcity of available radio spectrum
- Wireless Comm. with MIMO broadband channels is emerged
- Aim high data throughput transceiver design with better QoS

Introduction

The broadband MIMO system can be described by a polynomial channel matrix

$$\mathbf{H}(z) = \sum_{l=0}^{L} z^{-l} \mathbf{H}_{l} ,$$
 (1)

- OFDM-based solutions—narrowband subsystems
- Block precoding/equalisation—[Scaglione-1999]

Drawbacks—extra redundancy, lower data throughput

- V-BLAST approaches [Lozano-2002, Choi-2004]
- Linear & THP [Joham-2007] used as a benchmark

Linear precoding

THP precoding

Problem Formalisation

The approach of this paper is done in two stages:

■ Stage (1) — CCI Mitigation

The system in (1) can be diagonalised using a novel broadband SVD (BSVD) [McWhirter-2007] such that

$$\mathbf{H}(z) = \mathbf{U}(z)\mathbf{D}(z)\tilde{\mathbf{V}}(z) \tag{2}$$

where $\mathbf{U}(z)$ and $\mathbf{V}(z)$ are paraunitary matrices, i.e.,

$$\tilde{\mathbf{U}}(z)\,\mathbf{U}(z) = \mathbf{U}(z)\,\tilde{\mathbf{U}}(z) = \mathbf{U}(z)\,\mathbf{U}^H(z^{-1}) = \mathbf{I} \tag{3}$$

Defining a precoder $\mathbf{P}(z) = \mathbf{V}(z)$ and an equaliser $\mathbf{W}(z) = \tilde{\mathbf{U}}(z)$, the overall MIMO broadband system H(z) can be reduced to a diagonalised system D(z)

Problem Formalisation (Contd.)

■ Stage (2) — *ISI Mitigation*

 $\mathbf{D}(z)$ is a diagonalised and spectrally majorised system such that

$$\mathbf{D}(z) = diag\{D_0(z), D_1(z), \cdots D_{K-1}(z)\}$$
 (3a)

$$D_0(e^{j\Omega}) \ge D_1(e^{j\Omega}) \ge \dots \ge D_{K-1}(e^{j\Omega}) \,\forall \Omega$$
 (3b)

where $K = \min(M, N)$

 $F_i(z)$, and $B_i(z)$ are computed using the spectral factorisation theorem [Fisher-2005]

lotivation Background **Proposed Scheme** Simulation Results Conclusions

An Illustrative BSVD example

A 3x3 MIMO channel instance with exponentially power delay profile and L=4 is shown to illustrate the BSVD algorithm

Same Throughput Bit Loading

Table: BSVD-SISO for Same Throughput as a 4x4 MIMO System

Throughput	Case1: 8-bits	Case2: 16-bits	Case3: 24-bits
MIMO	QPSK	16-QAM	64-QAM
SISO-1	16-QAM	64-QAM	256-QAM
SISO-2	QPSK	64-QAM	256-QAM
SISO-3	QPSK	16-QAM	64-QAM
SISO-4	QPSK	QPSK	QPSK

simulation parameters

A 4x4 MIMO system with the following:

$$\blacksquare$$
 $\mathbf{H}_{I} \in \mathcal{CN}(0, -2dB \times I)$

$$L = 5, L_f = 10$$

300 different channel realisations

Background Proposed Scheme Simulation Results Conclusions

Performance Evaluation (Contd.)

Conclusions

- A BSVD-based solution with variable transmission rates is proposed
- This is resulting in a number of independent SISO subchannels with ordered qualities
- SISO-THP precoding algorithm with variable rates is applied to combat ISI
- This method is compared with a MIMO-THP incorporating spatio/temporal ordering
- Better BER performance is achieved for same target throughputs and transmit power

Conclusions

Thank You — Any Questions

