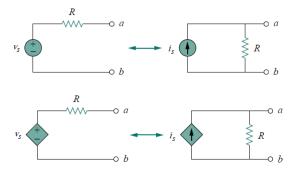
Chapter 4 — Circuit Theorems: Source Transformation & Thevenin's Theorem

Dr. Waleed Al-Hanafy
waleed_alhanafy@yahoo.com
Faculty of Electronic Engineering, Menoufia Univ., Egypt

MSA Summer Course: Electric Circuit Analysis I (ESE 233) — Lecture no. 7

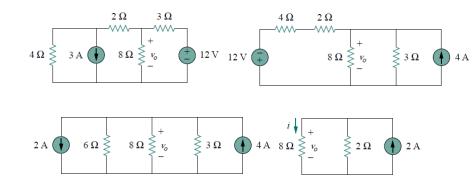
August 1, 2011

Overview

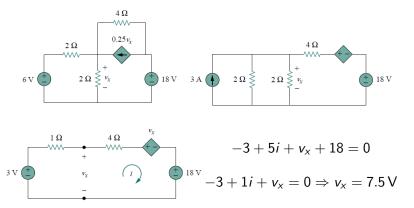

- 1 Source Transformation
- 2 Thevenin's Theorem
- 3 Conclusions

Reference:

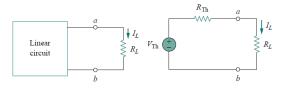
[1] Alexander Sadiku, Fundamentals of Electric Circuits, 4th ed. McGraw-Hill, 2009.


Introduction

Source transformation is another tool for simplifying circuits. A *source transformation* is the process of replacing a voltage source v_s in series with a resistor R by a current source is in parallel with a resistor R, or vice versa


Example 1

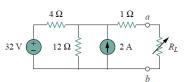
Use source transformation to find v_0 in the circuit shown Answer: 3.2 V

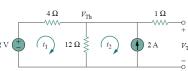

Example 2

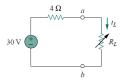
Find v_x in figure shown using source transformation

Thevenin's Theorem

Thevenin's theorem states that a linear two-terminal circuit can be replaced by an equivalent circuit consisting of a voltage source V_{Th} in series with a resistor R_{Th} , where V_{Th} is the open-circuit voltage at the terminals and R_{Th} is the input or equivalent resistance at the terminals when the independent sources are turned off.


$$I_L = \frac{V_{Th}}{R_{Th} + R_L}, \qquad V_L = I_L R_L = \frac{V_{Th} R_L}{R_{Th} + R_L}$$

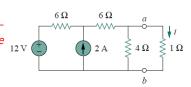

Examples


Find the Thevenin equivalent circuit of the circuit shown, to the left of the terminals ab. Then find the current through $R_L=6$, 16, and 36Ω

$$R_{Th} = 4 \parallel 12 + 1 = 4\Omega$$

 $-32 + 4i_1 + 12(i_1 - i_2) =$
 $0, i_2 = -2 \text{ A} \Rightarrow i_1 = 0.5 \text{ A}$
Thus, $V_{Th} = 12(i_1 - i_2) =$

$$I_L = \frac{V_{Th}}{R_{Th} + R_L} = \frac{30}{4 + R_L} = 3, 1.5$$
, and 0.75 A for $R_L = 6, 16$, and 36Ω respectively.



Examples (cont'd)

Using Thevenin's theorem, find the equivalent circuit to the left of the terminals in the circuit shown. Then find i.

Answer: $V_{Th} = 6$ V, $R_{Th} = 3\Omega$, i = 1.5 A

Conclusions

Concluding remarks

- Source transformation has been given with some examples
- Thevenin's Theorem has been studied highlighted by some examples