Transforrm-Domain Representation of Signals

Dr. Waleed Al-Hanafy
waleed_alhanafy@yahoo.com
Faculty of Electronic Engineering, Menoufia Univ., Egypt

Digital Signal Processing (ECE407) — Lecture no. 4

July 30, 2011

Overview

- Discrete Fourier Transform
 - Discrete-Time Fourier Transform
 - Discrete Fourier Transform

2 Conclusions

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) of a discrete-time signal x(nT) is defined as

$$X(\omega) = \sum_{n = -\infty}^{\infty} x(nT)e^{-j\omega nT}$$
 (1)

It shows that $X(\omega)$ is a periodic function with period 2π . Thus, the frequency range of a discrete-time signal is unique over the range $(-\pi,\pi)$ or $(0,2\pi)$.

The DTFT of x(nT) can also be defined in terms of normalized frequency as

$$X(F) = \sum_{n = -\infty}^{\infty} x(nT)e^{-j2\pi Fn}$$
 (2)

DTFT (cont'd)

Comparing this equation with the Fourier transform of the analog x(t), $X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$, the periodic sampling imposes a relationship between the independent variables t and t as $t = nT = n/f_s$. It can be shown that

$$X(F) = \frac{1}{T} \sum_{k=-\infty}^{\infty} x(f - kf_s)$$
 (3)

This equation states that X(F) is the sum of an infinite number of X(f), scaled by 1/T, and then frequency shifted to kf_s . It also states that X(F) is a periodic function with period $T=1/f_s$.

Example

Assume that a continuous-time signal x(t) is bandlimited to f_M , i.e., |X(f)|=0 for $|f|\geq f_M$, where f_M is the bandwidth of signal x(t). The spectrum is zero for $|f|\geq f_M$ as shown in the figure (a) below.

- (a) Spectrum of an analog signal
- (b) Spectrum of discrete-time signal when the sampling theorem is satisfied

(c) Spectrum of discrete-time signal when the sampling theorem is violated

Example (cont'd)

As shown in (3), sampling extends the spectrum X(f) repeatedly on both sides of the f-axis. When the sampling rate f_s is greater than $2f_M$, i.e., $f_M \leq f_{s/2}$, the spectrum X(f) is preserved in X(F) as shown in figure (b). In this case, there is no aliasing because the spectrum of the discrete-time signal is identical (except the scaling factor 1/T) to the spectrum of the analog signal within the frequency range $|f| \leq f_s/2$ or $|F| \leq 1$. The analog signal x(f) can be recovered from the discrete-time signal x(f) by passing it through an ideal lowpass filter with bandwidth f_M and gain T. This verifies the sampling theorem.

However, if the sampling rate $f_s < 2f_M$, the shifted replicas of X(f) will overlap as shown in figure (c). This phenomenon is called aliasing since the frequency components in the overlapped region are corrupted.

Discrete Fourier Transform

The DFT of a finite-duration sequence x(n) of length N is defined as

$$x(k) = \sum_{n=0}^{N-1} x(n)e^{-j(2\pi/N)kn}, \qquad k = 0, 1, \dots, N-1$$
 (4)

where X(k) is the kth DFT coefficient and the upper and lower indices in the summation reflect the fact that x(n)=0 outside the range $0 \le n \le N-1$. The DFT is equivalent to taking N samples of DTFT $X(\omega)$ over the interval $0 \le \omega < 2\pi$ at N discrete frequencies $\omega_k = 2\pi k/N$, where $k = 0, 1, \cdots, N-1$. The spacing between two successive X(k) is $2\pi/N$ rad (or f_s/N Hz).

Example

If the signal $\{x(n)\}$ is real valued and N is an even number, we can show that

$$X(0) = \sum_{n=0}^{N-1} x(n)$$

and

$$X(N/2) = \sum_{n=0}^{N-1} e^{-j\pi n} x(n) = \sum_{n=0}^{N-1} (-1)^n x(n).$$

Therefore, the DFT coefficients X(0) and X(N/2) are real values.

$$x(k) = \sum_{n=0}^{N-1} x(n)e^{-j(2\pi/N)kn}, \qquad k = 0, 1, \dots, N-1$$

Another form of DFT

The DFT defined in (4) can also be written as

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}, \qquad k = 0, 1, \dots, N-1$$
 (5)

where

$$W_N^{kn} = e^{-j(\frac{2\pi}{N})kn} = \cos\left(\frac{2\pi kn}{N}\right) - j\sin\left(\frac{2\pi kn}{N}\right), \qquad 0 \le k, n \le N-1.$$
(6)

The parameter W_N^{kn} is called the twiddle factors of the DFT. Because $W_N^N=e^{-j2\pi}=1=W_N^0,\ W_N^k, k=0,1,\cdots,N-1$ are the N roots of unity in clockwise direction on the unit circle.

Twiddle Factors Properties

It can be shown that $W_N^{N/2} = e^{-j\pi} = -1$.

The twiddle factors have the symmetry property:

$$W_N^{k+N/2} = -W_N^k \qquad 0 \le k \le N/2 - 1,$$
 (7)

and the periodicity property:

$$W_N^{k+N} = W_N^k. (8)$$

Twiddle factors for DFT, N = 8

Example

Consider the finite-length signal

$$x(n)=a^n, \qquad n=0,1,\cdots,N-1$$

where 0 < a < 1. The DFT of x(n) is computed as

$$x(k) = \sum_{n=0}^{N-1} a^n e^{-j(2\pi k/N)n} = \sum_{n=0}^{N-1} \left(a e^{-j(2\pi k/N)} \right)^n$$

$$X(k) = \frac{1 - \left(ae^{-j(2\pi k/N)}\right)^N}{1 - ae^{-j(2\pi k/N)}} = \frac{1 - a^N}{1 - ae^{-j(2\pi k/N)}}, \quad k = 0, 1, \dots, N-1$$

Conclusions

Concluding remarks

- The Discrete Fourier Transform (DFT) has been discussed
- As an initial step it is convenient to consider the Discrete-Time Fourier Transform (DTFT)
- Some properties and examples of the DFT have been given