Transforrm-Domain Representation of Signals: Discrete Fourier Transform (DFT)

Dr. Waleed Al-Hanafy
waleed_alhanafy@yahoo.com
Faculty of Electronic Engineering, Menoufia Univ., Egypt

Digital Signal Processing (ECE407) — Lecture no. 3

July 16, 2011

Overview

- 1 Z-Transform (Cont'd)
 - Common Z-Transform Pairs
 - Inverse Z-Transform using Partial-Fraction Expansion
- 2 Frequency Responses
- 3 Discrete Fourier Transform
- 4 Conclusions

Common Z-Transform Pairs

Common Z-Transform Pairs

signal, $x(n)$	z-transform, $X(z)$	ROC
$\delta(n)$	1	all z
$\delta(n-n_0)$	z^{-n_0}	$z \neq 0$
u(n)	$\frac{1}{1-z^{-1}}$	z > 1
a ⁿ u(n)	$\frac{1}{1-az^{-1}}$	z > a
$e^{-\alpha n}u(n)$	$\frac{1}{1-e^{-\alpha}z^{-1}}$	$ z > e^{-\alpha} $
nu(n)	$\frac{z^{-1}}{(1-z^{-1})^2}$	z > 1

Partial-Fraction Expansion Method

Example: Find the inverse *Z*-Transform of the following function using the partial-fraction expansion method:

$$X(z) = \frac{z(z-3)}{(z-2)(z-4)(z+5)}$$

Answer:

$$\frac{X(z)}{z} = \frac{(z-3)}{(z-2)(z-4)(z+5)} = \frac{A}{(z-2)} + \frac{B}{(z-4)} + \frac{C}{(z+5)}$$

$$= \frac{1}{14(z-2)} + \frac{1}{18(z-4)} - \frac{8}{63(z+5)}$$

$$\therefore X(z) = \frac{(1/14)z}{(z-2)} + \frac{(1/18)z}{(z-4)} - \frac{(8/63)z}{(z+5)}$$

$$\Rightarrow x(n) = (\frac{1}{14}2^n + \frac{1}{19}4^n - \frac{8}{62}(-5)^n) u(n)$$

The frequency response of a digital system can be readily obtained from its transfer function H(z) by setting $z = e^{jw}$ and obtain

Discrete Fourier Transform

$$H(\omega) = H(z) \mid_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} h(n)z^{-n} \mid_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n}.$$
(1)

Thus, the frequency response $H(\omega)$ of the system is obtained by evaluating the transfer function on the unit circle $|z|=|e^{j\omega}|=1$. The digital frequency is in the range of $-\pi < \omega < \pi$. The characteristics of the system can be described using the frequency response. In general, $H(\omega)$ is a complex-valued function expressed in polar form as

$$H(\omega) = |H(\omega)| e^{j\phi(\omega)},$$

where $|H(\omega)|$ is the magnitude (or amplitude) response and $\phi(\omega)$ is the phase response. The magnitude response $|H(\omega)|$ is an even

Discrete Fourier Transform

function of ω , and the phase response $\phi(\omega)$ is an odd function. Thus, we only need to evaluate these functions in the frequency region $0 \le \omega \le \pi$. $|H(\omega)|^2$ is the squared-magnitude response, and $|H(\omega_0)|$ is the system gain at frequency ω_0 .

Examples

■ The moving-average filter expressed as

$$y(n) = 0.5[x(n) + x(n-1)], \quad n \ge 0$$

Discrete Fourier Transform

is a simple first-order FIR filter. Taking the z-transform of both sides and rearranging the terms, we obtain

$$H(z) = 0.5 (1 + z^{-1})$$
.

From(1), we have

$$\begin{split} H(\omega) &= 0.5 \left(1 + e^{-j\omega} \right) = 0.5 \left(1 + \cos \omega - j \sin \omega \right), \\ |H(\omega)|^2 &= \left\{ Re \left[H(\omega) \right] \right\}^2 + \left\{ Im \left[H(\omega) \right] \right\}^2 = 0.5 (1 + \cos \omega), \\ \phi(w) &= \tan^{-1} \left\{ \frac{Im \left[H(\omega) \right]}{Re \left[H(\omega) \right]} \right\} = \tan^{-1} \left(\frac{-\sin \omega}{1 + \cos \omega} \right), \end{split}$$

Examples (cont'd)

since $\sin \omega = 2 \sin \left(\frac{\omega}{2}\right) \cos \left(\frac{\omega}{2}\right)$ and $\cos \omega = 2 \cos^2 \left(\frac{\omega}{2}\right) - 1$. Therefore, the phase response is

$$\phi(\omega) = \tan^{-1}\left[-\tan\left(\frac{\omega}{2}\right)\right] = -\frac{\omega}{2}$$
.

Discrete Fourier Transform

The frequency response can be analysed using the MATLAB function:

$$[H,w] = freqz(b,a,N);$$

which returns the N-point frequency vector w and the complex frequency response vector H.

Consider the IIR filter defined as

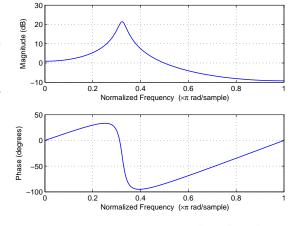
$$y(n) = x(n) + y(n-1) - 0.9y(n-2)$$
.

The transfer function is $H(z) = \frac{1}{1-z^{-1}+0.9z^{-2}}$

Examples (cont'd)

MATLAB script The for analysing the magnitude and phase responses of this IIR filter is listed as follows:

```
b=[1]:
a=[1, -1, 0.9];
freqz(b,a);
```



Discrete Fourier Transform

To perform frequency analysis of x(n), we can convert the time-domain signal into frequency domain using the z-transform, and the frequency analysis can be performed by substituting $z = e^{j\omega}$. However, X(w) is a continuous function of continuous frequency ω , and it also requires an infinite number of x(n)samples for calculation. Therefore, it is difficult to compute $X(\omega)$ using digital hardware.

Discrete Fourier Transform

The discrete Fourier transform (DFT) of N-point signals $\{x(0), x(1), x(2), \dots, x(N-1)\}\$ can be obtained by sampling $X(\omega)$ on the unit circle at N equally-spaced samples at frequencies $\omega_k = 2\pi k / N, k = 0, 1, \dots, N - 1$. From (1), we have

$$X(k) = X(w) \mid_{\omega=2\pi k/N} = \sum_{n=0}^{N-1} x(n)e^{-j(\frac{2\pi k}{N})n}, k = 0, 1, \dots, N-1,$$

where n is the time index, k is the frequency index, and X(k) is the kth DFT coefficient.

■ The DFT is equivalent to taking N samples of DTFT $X(\omega)$ over the interval $0 < \omega < 2\pi$ at N discrete frequencies $\omega_k = 2\pi k/N$, where $k = 0, 1, \dots, N-1$. The spacing between two successive X(k) is $2\pi/N$ rad (or f_s/N Hz).

Discrete Fourier Transform

The DFT can be manipulated to obtain a very efficient computing algorithm called the fast Fourier transform (FFT).

MATLAB provides the function fft(x) to compute the DFT of the signal vector x. The function fft(x,N) performs N-point FFT. If the length of x is less than N, then x is padded with zeros at the end. If the length of x is greater than N, function fft(x,N)truncates the sequence x and performs DFT of the first N samples only. DFT generates N coefficients X(k) for $k = 0, 1, \dots, N - 1$. The frequency resolution of the N-point DFT is

$$\Delta = \frac{f_s}{M}$$

The frequency f_k (in Hz) corresponding to the index k can be computed by

$$f_k = k\Delta = \frac{kf_s}{N}, k = 0, 1, \dots, N - 1.$$
 (3)

The Nyquist frequency $(f_s/2)$ corresponds to the frequency index k = N/2. Since the magnitude |X(k)| is an even function of k, we only need to display the spectrum for $0 \le k \le N/2$ (or $0 < \omega_k < \pi$).

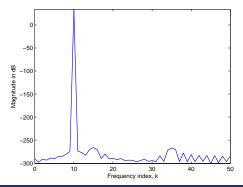
A MATLAB Example

Generate 100 samples of sinewave with A=1, f=1 kHz, and sampling rate of 10 kHz. Find the magnitude response of the signal and plot using MATLAB

```
N=100; f = 1000; fs = 10000;
n=[0:N-1]; k=[0:N-1];
omega=2*pi*f/fs;
xn=sin(omega*n);
Xk=fft(xn.N):
                                % Perform DFT
magXk=20*log10(abs(Xk));
                                % Compute magnitude spectrum
plot(k, magXk);
axis([0, N/2, -inf, inf]);
                               % Plot from 0 to pi
xlabel('Frequency index, k');
ylabel('Magnitude in dB');
```


A MATLAB Example (cont'd)

From (2), frequency resolution is 100 Hz. The peak spectrum shown in the Figure below is located at the frequency index k = 10, which corresponds to 1000 Hz as indicated by (3).



Concluding remarks

- The Z-transform of some common signals are introduced
- Inverse Z-transform using partial-fraction expansion is given
- The frequency response of systems' transfer functions is discussed
- An introduction to DFT is studied

