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Common Z-Transform Pairs

Common Z-Transform Pairs

signal, x(n) z-transform, X (z) ROC

δ(n) 1 all z

δ(n − n0) z−n0 z 6= 0

u(n) 1
1−z−1 |z | > 1

anu(n) 1
1−az−1 |z | > |a|

e−αnu(n) 1
1−e−αz−1 |z | > |e−α|

nu(n) z−1

(1−z−1)2
|z | > 1
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Inverse Z -Transform using Partial-Fraction Expansion

Partial-Fraction Expansion Method

Example: Find the inverse Z -Transform of the following function
using the partial-fraction expansion method:

X (z) =
z(z − 3)

(z − 2)(z − 4)(z + 5)

Answer:

X (z)
z = (z−3)

(z−2)(z−4)(z+5) = A
(z−2) + B

(z−4) + C
(z+5)

= 1
14(z−2) + 1

18(z−4) −
8

63(z+5)

∴ X (z) = (1/14)z
(z−2) + (1/18)z

(z−4) −
(8/63)z
(z+5)

⇒ x(n) =
(

1
142n + 1

184n − 8
63(−5)n

)
u(n)
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The frequency response of a digital system can be readily obtained
from its transfer function H(z) by setting z = e jw and obtain

H(ω) = H(z) |z=e jω=
∞∑

n=−∞
h(n)z−n |z=e jω=

∞∑
n=−∞

h(n)e−jωn .

(1)
Thus, the frequency response H(ω) of the system is obtained by
evaluating the transfer function on the unit circle |z | =

∣∣e jω∣∣ = 1.
The digital frequency is in the range of −π ≤ ω ≤ π.
The characteristics of the system can be described using the
frequency response. In general, H(ω) is a complex-valued function
expressed in polar form as

H(ω) = |H(ω)| e jφ(ω),

where |H(ω)| is the magnitude (or amplitude) response and φ(ω)
is the phase response. The magnitude response |H(ω)| is an even
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function of ω, and the phase response φ(ω) is an odd function.
Thus, we only need to evaluate these functions in the frequency
region 0 ≤ ω ≤ π. |H(ω)|2 is the squared-magnitude response, and
|H(ω0)| is the system gain at frequency ω0.
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Examples

The moving-average filter expressed as

y(n) = 0.5 [x(n) + x(n − 1)] , n ≥ 0

is a simple first-order FIR filter. Taking the z-transform of
both sides and rearranging the terms, we obtain

H(z) = 0.5
(
1 + z−1

)
.

From(1), we have

H(ω) = 0.5
(
1 + e−jω

)
= 0.5 (1 + cosω − j sinω) ,

|H(ω)|2 = {Re [H(ω)]}2 + {Im [H(ω)]}2 = 0.5(1 + cosω),

φ(w) = tan−1
{
Im [H(ω)]

Re [H(ω)]

}
= tan−1

(
− sinω

1 + cosω

)
,
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Examples (cont’d)

since sinω = 2 sin
(
ω
2

)
cos
(
ω
2

)
and cosω = 2 cos2

(
ω
2

)
− 1.

Therefore, the phase response is

φ(ω) = tan−1
[
− tan

(ω
2

)]
= −ω

2
.

The frequency response can be analysed using the MATLAB
function:
[H,w]=freqz(b,a,N);

which returns the N-point frequency vector w and the complex
frequency response vector H.

Consider the IIR filter defined as

y(n) = x(n) + y(n − 1)− 0.9y(n − 2) .

The transfer function is H(z) = 1
1−z−1+0.9z−2
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Examples (cont’d)

The MATLAB script
for analysing the ma-
gnitude and phase res-
ponses of this IIR filter
is listed as follows:
b=[1];

a=[1, -1, 0.9];

freqz(b,a);
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To perform frequency analysis of x(n),we can convert the
time-domain signal into frequency domain using the z-transform,
and the frequency analysis can be performed by substituting
z = e jω. However, X (w) is a continuous function of continuous
frequency ω, and it also requires an infinite number of x(n)
samples for calculation. Therefore, it is difficult to compute X (ω)
using digital hardware.
The discrete Fourier transform (DFT) of N-point signals
{x(0), x(1), x(2), · · · , x(N − 1)} can be obtained by sampling
X (ω) on the unit circle at N equally-spaced samples at frequencies
ωk = 2πk/N, k = 0, 1, · · · ,N − 1. From (1), we have

X (k) = X (w) |ω=2πk/N=
N−1∑
n=0

x(n)e−j(
2πk
N )n, k = 0, 1, · · · ,N − 1,

where n is the time index, k is the frequency index, and X (k) is
the kth DFT coefficient.
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The DFT is equivalent to taking N samples of DTFT X (ω)
over the interval 0 ≤ ω < 2π at N discrete frequencies
ωk = 2πk/N, where k = 0, 1, · · · .N − 1. The spacing
between two successive X (k) is 2π/N rad (or fs/N Hz).

The DFT can be manipulated to obtain a very efficient
computing algorithm called the fast Fourier transform (FFT).

MATLAB provides the function fft(x) to compute the DFT of
the signal vector x . The function fft(x,N) performs N-point
FFT. If the length of x is less than N, then x is padded with zeros
at the end. If the length of x is greater than N, function fft(x,N)

truncates the sequence x and performs DFT of the first N samples
only. DFT generates N coefficients X (k) for k = 0, 1, · · · ,N − 1.
The frequency resolution of the N-point DFT is

∆ =
fs
N
. (2)
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The frequency fk (in Hz) corresponding to the index k can be
computed by

fk = k∆ =
kfs
N
, k = 0, 1, · · · ,N − 1 . (3)

The Nyquist frequency (fs/2) corresponds to the frequency index
k = N/2. Since the magnitude |X (k)| is an even function of k, we
only need to display the spectrum for 0 ≤ k ≤ N/2 (or
0 ≤ ωk ≤ π).
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A MATLAB Example

Generate 100 samples of sinewave with A = 1, f = 1 kHz, and
sampling rate of 10 kHz. Find the magnitude response of the
signal and plot using MATLAB

N=100; f = 1000; fs = 10000;

n=[0:N-1]; k=[0:N-1];

omega=2*pi*f/fs;

xn=sin(omega*n);

Xk=fft(xn,N); % Perform DFT

magXk=20*log10(abs(Xk)); % Compute magnitude spectrum

plot(k, magXk);

axis([0, N/2, -inf, inf]); % Plot from 0 to pi

xlabel(’Frequency index, k’);

ylabel(’Magnitude in dB’);
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A MATLAB Example (cont’d)

From (2), frequency resolution is 100 Hz. The peak spectrum
shown in the Figure below is located at the frequency index
k = 10, which corresponds to 1000 Hz as indicated by (3).
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Conclusion

Concluding remarks

The Z-transform of some common signals are introduced

Inverse Z-transform using partial-fraction expansion is given

The frequency response of systems’ transfer functions is
discussed

An introduction to DFT is studied

.
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