Learning MATLAB and its Applications for Signal Processing & Communications

Dr. Waleed Al-Hanafy
waleed_alhanafy@yahoo.com
Faculty of Electronic Engineering, Menoufia Univ., Egypt

Learning MATLAB & its Applications — Lecture no. 2

July 14, 2011

- 1 Vectors & Matrices Addressing
 - Vectors
 - Matrices
 - Matrix Operations
 - Built-in Functions for Handling Arrays
- 2 Conclusions

References:

- [1] Desmond J. Higham and Nicholas J. Higham, MATLAB Guide, 2nd ed. Society for Industrial and Applied Mathematics, 2005.
- [2] Amos Gilat, MATLAB An Introduction with Applications. John Wiley & Sons Inc., 2004.

Some Elementary Vector Addressing

Operation	Command	Outcome
Zeroing	a(2:4)=0;	zeroing the entries 2, 3 and 4 of a vector a
Deleting	a(2)=[];	removes or deletes the 2nd entry of a vector a ; the size of a will
		change
Adding	a(3)=a(3)+5;	adds 5 to the 3rd entry of vector a
~	a(3)=a(3)+a(2);	adds the 2nd entry of vector a to its 3rd entry
Accessing	a(2:5);	accessing the 2nd to the 5th entry of vector a
Logic's	a>.5;	returns one in the position that $a>.5$ and 0 otherwise
~	a(a>.5);	finds the entries of ${f a}$ that satisfies the condition, i.e., ${f a}>.5$
~	a(a>.5 & <.7);	finds the entries of $oldsymbol{a}$ that satisfies the two conditions
~	find(a<.1);	returns the position of a that satisfies the condition
~	a(find(a<.1));	returns the entries of a that satisfies the condition

Some Elementary Matrix Addressing

Oper.	Command	Outcome
Zeroing	a(2:4,[1 3 6])=0;	zeroing the block of rows 2-4 and columns 1, 3, 6 of a matrix a
Deleting	a(2:2:6,:)=[];	removes or deletes rows 2, 4, and 6 of a matrix a; the size of a will
		change
Adding	a(:,3)=a(:,3)+5;	adds 5 to the 3rd column of matrix a
~	a(2,:)=a(2,:)+a(4,:);	adds the 4th row of matrix a to its 2nd row
~	a(:,3)=a(:,3)+a(:,1)+a(:,2);	adds columns 1 and 2 to the 3rd column of matrix a
~	sum(a,1)	adds all rows of matrix a in one row
~	sum(a,2)	adds all columns of matrix a in one column
~	sum(sum(a));	returns the sum of all entries of matrix a

Simple Matrix Operations

```
3*a; a.*b; a*b; det(a); inv(a); pinv(a); a^-1;
X=A^-1*B; X=A\B; mean(a); sort(a); median(a); min(a);
[d,n]=min(a); max(a); [d,n]=max(a);
```

Miscellaneous

- length(v),
- size(A),
- reshape(A,m,n),
- diag(v),
- diag(A)

Concluding remarks

- Some elementary vector and matrix addressing are given
- Some examples and exercises are illustrated