Chapter 2 — Basic Laws

Dr. Waleed Al-Hanafy waleed_alhanafy@yahoo.com Faculty of Electronic Engineering, Menoufia Univ., Egypt

> MSA Summer Course: Electric Circuit Analysis I (ESE 233) — Lecture no. 2

> > July 17, 2011

Series and Parallel Resistors

- 1 Ohm's Laws
- 2 Nodes, Branches, and Loops
- 3 Kirchhoff's Laws
- 4 Series and Parallel Resistors
- 5 Conclusions

Reference:

[1] Alexander Sadiku, Fundamentals of Electric Circuits, 4th ed. McGraw-Hill, 2009.

The physical property, or ability to resist current, is known as resistance and is represented by the symbol R. The resistance of any material with a uniform cross-sectional area A and length I is given as

$$R = \rho \frac{I}{A}, \quad \text{ohms}(\Omega)$$

where ρ is known as the *resistivity* of the material in ohm-meters.

Series and Parallel Resistors

TABLE 2.1	Resistivities of common materials	
Material	Resistivity $(\Omega \cdot m)$	Usage
Silver	1.64×10^{-8}	Conductor
Copper	1.72×10^{-8}	Conductor
Aluminum	2.8×10^{-8}	Conductor
Gold	2.45×10^{-8}	Conductor
Carbon	4×10^{-5}	Semiconducto
Germanium	47×10^{-2}	Semiconducto
Silicon	6.4×10^{2}	Semiconducto
Paper	1010	Insulator
Mica	5×10^{11}	Insulator
Glass	10 ¹²	Insulator
Teflon	3×10^{12}	Insulator

Ohm's Law

Ohm's law states that the voltage v across a resistor is directly proportional to the current i flowing through the resistor. Georg Simon Ohm (1787–1854)

$$v \propto i$$

 $v = iR \rightarrow R = \frac{v}{i}$ $1\Omega = 1V/A$

Since the value of R can range from zero to infinity, it is important that we consider the two extreme possible values of R. An element with R=0 is called a *short circuit*. For a short circuit, v = iR = 0 showing that the voltage is zero but the current could be anything. Similarly, an element with $R = \infty$ is known as an open

circuit, for an open circuit i = v/R = 0.

Definition: Conductance is the ability of an element to conduct electric current; it is measured in mhos (\mho) or Siemens (S).

$$G = \frac{1}{R} = \frac{i}{v}, \qquad 1S = 1\mho = 1A/V$$

$$p = i^{2}R = \frac{v^{2}}{R}$$

$$= v^{2}G = \frac{i^{2}}{G}$$

Example: For the circuit shown, calculate the voltage v, the conductance G, and the power p. Answer: 20 V, 100 μ S, 40 mW.

Definitions

- Branch: A branch represents a single element such as a voltage source or a resistor
- Node: A node is the point of connection between two or more branches
- Loop: A loop is any closed path in a circuit
- Two or more elements are in *series* if they are cascaded or connected sequentially and consequently carry the same current. Two or more elements are in *parallel* if they are connected to the same two nodes and consequently have the same voltage across them.

Ohm's law by itself is not sufficient to analyse circuits. However, when it is coupled with Kirchhoff's two laws, we have a sufficient, powerful set of tools for analysing a large variety of electric circuits.

- Kirchhoff's laws were first introduced in 1847 by the German physicist Gustav Robert Kirchhoff (1824–1887).
- These laws are formally known as Kirchhoff's current law (KCL) and Kirchhoff's voltage law (KVL).
 - Kirchhoff's first law (KCL) is based on the law of conservation of charge, which requires that the algebraic sum of charges within a system cannot change.
 - Kirchhoff's second law (KVL) is based on the principle of conservation of energy.

Kirchhoff's Current Law (KCL)

KCL: states that the algebraic sum of currents entering a node (or a closed boundary) is zero.

$$\sum_{n=1}^{N}i_n=0$$

where N is the number of branches connected to the node and in is the *n*th current entering (or leaving) the node.

Kirchhoff's Voltage Law (KVL)

KVL: states that the algebraic sum of all voltages around a closed path (or loop) is zero.

$$\sum_{m=1}^{M} v_m = 0,$$

where M is the number of voltages in the loop (or the number of branches in the loop) and v_m is the mth voltage.

Example: $-v_1 + v_2 + v_3 - v_4 + v_5 = 0$, or $v_2 + v_3 + v_5 = v_1 + v_4$, i.e., sum of voltage drops = sum of voltage rises

Series & Voltage Division

The equivalent resistance of any number of resistors connected in series is the sum of the individual resistances. For N resistors in series then.

$$R_{eq} = R_1 + R_2 + \dots + R_N = \sum_{n=1}^{N} R_n$$

Notice that the source voltage v is divided among the resistors in direct proportion to their resistances; the larger the resistance, the larger the voltage drop. This is called the *principle of voltage* division, and the circuit in Fig. 2.29 is called a voltage divider.

$$v_n = \frac{R_n}{R_1 + R_2 + \dots + R_N} v$$

The *equivalent resistance* of two parallel resistors is equal to the product of their resistances divided by their sum.

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N} \Longrightarrow R_{eq} = \frac{R}{N}$$
 if $R_1 = R_2 = \dots = R_N = R$

The *equivalent conductance* of resistors connected in parallel is the sum of their individual conductances.

$$G_{eq} = G_1 + G_2 + \cdots + G_N$$

$$i_1 = \frac{R_2 i}{R_1 + R_2}, \quad i_2 = \frac{R_1 i}{R_1 + R_2}$$

Find R_{eq} Answer 14.4Ω

Conclusion

Concluding remarks

- Basic circuits laws are studied
- These laws include, Ohm's law, Kirchhoff's two laws
- Series and parallel connections of resistors are discussed
- Voltage and current divisions are identified as a result of series and parallel resistors connection respectively
- Some illustrative examples are given.

