Learning MATLAB and its Applications for Signal Processing & Communications

Dr. Waleed Al-Hanafy
waleed_alhanafy@yahoo.com
Faculty of Electronic Engineering, Menoufia Univ., Egypt

Learning MATLAB & its Applications — Lecture no. 1

July 9, 2011

Overview

- Introduction
 - Definition
 - Getting Started
 - Examples
- 2 Vectors and Matrices
 - Creating a One-Dimensional Array (Vector)
 - Creating a Two-Dimensional Array (Matrix)
- 3 Conclusions

References:

- [1] Desmond J. Higham and Nicholas J. Higham, MATLAB Guide, 2nd ed. Society for Industrial and Applied Mathematics, 2005.
- [2] Amos Gilat, MATLAB An Introduction with Applications. John Wiley & Sons Inc., 2004.

MATLAB Definition

- MATLAB is a powerful language for technical computing.
- The name MATLAB stands for MATrix LABoratory, because its basic data element is a matrix (array).
- MATLAB can be used for math computations, modelling and simulations, data analysis and processing, visualisation and graphics, and algorithm development.
- MATLAB is widely used in universities and colleges in introductory and advanced courses in mathematics, science, and especially in engineering.

- In industry the software is used in research, development and design.
- The standard MATLAB program has tools (functions) that can be used to solve common problems.
- In addition, MATLAB has optional toolboxes that are a collection of specialised programs designed to solve specific types of problems.
- Examples include toolboxes for signal processing, symbolic calculations, and control systems.

MATLAB Windows

Arithmetic Operations

Operation	Symbol
Addition	+
Subtraction	-
Multiplication	*
Division	/
Exponentiation	^

Precedence	Mathematical Operation	
	Parentheses. For nested	
First	parentheses, the innermost	
	are executed first	
Second	Exponentiation	
Third	Multiplication and division	
Fourth	Addition and subtraction	

Display Formats Commands

Command	Description	
format short	Scaled fixed point format with 5 digits	
format long	Scaled fixed point format with 15 digits for double	
	and 7 digits for single	
format short e	Floating point format with 5 digits	
format long e	Floating point format with 15 digits for double and	
	7 digits for single	
format bank	Fixed format for dollars and cents	
format hex	Hexadecimal format	

Elementary Math Built-in Functions

Command	Description
sqrt(x)	Square root
exp(x)	Exponential (e^x)
abs(x)	Absolute value
log(x)	Natural logarithm, Base e logarithm (In)
log10(x)	base 10 logarithm
factorial(x)	The factorial function $x!$, x must be a positive
	integer
sin(x)	Sine of angle x (x in radians)
cos(x)	Cosine of angle x (x radians)
tan(x)	Tangent of angle x (x radians)
cot(x)	Cotangent of angle x (x radians)

Elementary Math Built-in Functions (cont'd)

Command	Description
round(x)	Round to the nearest integer
fix(x)	Round towards zero
ceil(x)	Round towards infinity
floor(x)	Round towards minus infinity
log10(x)	base 10 logarithm
factorial(x)	The factorial function $x! \times must$ be a positive
	integer
rem(x,y)	Returns the remainder after x is divided by y
sign(x)	Signum function. Returns 1 if $x > 0$, -1 if $x < 0$
	0, and 0 if x=0

Variables

■ The Assignment Operator:

Variable_name = A numerical value, or a computable expression

■ Rules About Variable Names:

- Can be up to 63 (in MATLAB 6.5) characters long (31 characters in MATLAB 6.0)
- Can contain letters, digits, and the underscore character
- Must begin with a letter
- MATLAB is case sensitive; it distinguishes between uppercase and lowercase letters. For example, AA, Aa, aA, and aa are the names of four different variables
- Avoid using the names of a built-in function for a variable (i.e. avoid using: cos, sin, exp, sqrt, etc.)
- Once a function name is used to define a variable, the function cannot be used

Variables (cont'd)

■ Predefined Variables:

	A variable that has the value of the last expression that was	
ans	not assigned to a specific variable. If the user does not assign	
	the value of an expression to a variable, MATLAB automati-	
	cally stores the result in ans	
pi	The number π	
eps	The smallest difference between two numbers. Equals to 2^(-	
	52), which is approximately 2.2204e-016	
inf	Used for infinity	
i	Defined as $\sqrt{-1}$, which is: $0+1.0000$ i	
j	Same as i	
NaN	Stands for Not-a-Number. Used when MATLAB cannot de-	
	termine a valid numeric value. For example $0/0$	

Useful Commands for Managing Variables

Command	Outcome
clear	Removes all variables from the memory
clear x, y, z	Removes only variables x, y, and 7. from the memory
who	Displays a list of the variables currently in the me-
	mory
whos	Displays a list of the variables currently in the me-
	mory and their size together with information about
	their bytes and class.

Simple Examples

Example 1 — Trigonometric identity:

A trigonometric identity is given by

$$\cos^2\frac{x}{2} = \frac{\tan x + \sin x}{2\tan x}.$$

Verify that the identity is correct by calculating each side of the equation, substituting $\frac{\pi}{2}$

$$x = \frac{\pi}{5}$$

LHS =

0.9045

>> RHS =
$$(\tan(x)+\sin(x))/(2*\tan(x))$$
 % Calculate the left-hand side

RHS = 0.9045

>>

Simple Examples (cont'd)

Example 2 — Heat transfer:

An object with an initial temperature of T_0 that is placed at time t=0 inside a chamber that has a constant temperature of T_s , will experience a temperature change according to the equation: $T=T_s+(T_0-T_s)e^{-kt}$ where T is the temperature of the object at time t, and k is a constant. A soda can at a temperature of $120^{\circ}\mathrm{F}$ (was left in the car) is placed inside a refrigerator where the temperature is $38^{\circ}\mathrm{F}$. Determine, to the nearest degree, the temperature of the can after three hours. Assume k=0.45. First define all the variables and then calculate the temperature using one MATLAB command.

```
>> Ts = 38; T0 = 120; k = 0.45; t = 3;  % Define variables

>> T = round(Ts + (T0 - Ts)*exp(-k*t))  % Calculate T

T = 59

>>
```

Exercises

Solve the following problems in the Command Window.

1 Calculate:

(a)
$$(2+7)^3 + \frac{273^{2/3}}{2} + \frac{55^2}{3}$$

(b)
$$2^3 + 7^3 + \frac{273^3}{2} + 55^{3/2}$$

(c)
$$\frac{3^7 \log(76)}{7^3 + 546} + \sqrt[3]{910}$$

(d)
$$\cos^2\left(\frac{5\pi}{6}\right) + \sin\left(\frac{7\pi}{8}\right)^2 + \frac{\tan\left(\frac{\pi}{6}\ln 8\right)}{\sqrt{7}}$$

Define the variables a, b, c, and d as:a = 15.62, b = -7.08, c = 62.5, and

$$d = 0.5(ab - c)$$
. Evaluate: (a) $a + \frac{ab(a+d)^2}{c\sqrt{|ab|}}$ and (b) $de^{\left(\frac{d}{2}\right)} + \frac{\frac{ad+cd}{20} + \frac{30}{30}}{(a+b+c+d)}$

Vectors

Row vector: To create a row vector type the elements with a space or a comma between the elements inside the square brackets

Column vector: To create a column vector type the left square bracket [and then enter the elements with a semicolon between them, or press the Enter key after each element. Type the right square bracket] after the last element

```
Variable\_name = linspace(xi, xf, n)
```


Matrices

A two-dimensional array, also called a matrix, has numbers in rows and columns. Matrices can be used to store information like in a table. Matrices play an important role in linear algebra and are used in science and engineering to describe many physical quantities.

Variable_name = [1st row elements; 2nd row elements; ...; last row elements]

Example: $>> A = [1 \ 2 \ 3;4 \ 5 \ 6;7 \ 8 \ 9]$

Creating a Two-Dimensional Array (Matrix)

Miscellaneous

- The zeros, ones and eye commands
- The transpose operator
- Array addressing
 - Adding elements to existing variables
 - **Deleting elements**
- Built-in functions for handling arrays
 - length(v), size(A), reshape(A,m,n), diag(v), diag(A)

Concluding remarks

- A brief introduction for MATLAB is given
- Elementary operations and some program consideration are also considered.
- Variables examples are defined for scalar, vector, and matrix quantities.
- Some examples and exercises are addressed

